Quality issues of integrated statistical repositories

Wojciech Roszka¹

¹Department of Statistics, Poznan University of Economics, POLAND

POZNAŃ UNIVERSITY OF ECONOMICS

Presentation plan	Research problem	Statistical data integration	Empirical study	Conclusions
•				
Presentation plan				

Presentation plan

- Research problem
- 2 Statistical data integration
- Empirical study
- 4 Conclusions

Presentation plan	Research problem	Statistical data integration	Empirical study	Conclusions
	••			
Purpose of the study				

Purpose of the study

Demand for multidimensional information

Increasing information needs of society and business:

- reliability;
- timeliness;
- comprehensiveness.
- Opportunities
 - The availability of multiple socio-economic data sources (sample surveys, census, administrative registers).
 - The development of modern methods of estimation and data processing.
- 3 Problems
 - The high cost and long duration of the new studies.
 - Joint observation of topics from various research is not always possible.

Presentation plan	Research problem	Statistical data integration	Empirical study	Conclusions
	0•			
Sample surveys				

Pros

- cover many aspects of socio-economic life
- provide information during inter-cesus periods
- harmonized methodology, populations and definitions
- well developed methodology

Cons

relatively low sample size makes it impossible to estimate at low levels of aggregation,

one survey - one subject,

- relatively short questionaires (respondents burden)
- no joint observations of all socio-economic characteristics
- need for imputation and calibration in missing data handling

Integration

- many common characteristics in every study
- concatenation of datasets increasing sample size
- more and more developing trend of data integration (paradigm change!)

ntation plan	Research problem	Statistical data integration ●○○○○○	Empirical study	Conclusion
stical matching				
Statistica	l matching sch	eme		
Scheme 1. Entry Set A Y_1 Y_{11}^A Y_{11}^A Y_{11}^A Y_{11}^A Y_{11}^A Y_{11}^A Y_{11}^A	y data in statistical match $\begin{array}{c c} & Y_Q & X_1 \\ \hline & Y_Q & X_1^A \\ \hline & Y_1^A & X_1^A \\ \hline & & Y_{aQ} & X_{a1}^A \\ \hline & & & Y_{aQ}^A & X_{a1}^A \\ \hline & & & & Y_{nAQ}^A & X_{n}^A \end{array}$	$\begin{array}{c c} & & & X_P \\ \hline & & & X_{1P} \\ \hline & & & X_{1P} \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$		
Source: D'Orazi	Set B X_{1} X_{2} X_{5} X_{5} X_{n} Set	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Z_{R} Z_{1R}^{B} Z_{bR}^{B} Z_{bR}^{B} $Z_{n_{B}R}^{B}$	
1 Data se	ts A and B contain: A: variables X and Y, B: variables X and Z.			
 2 Variable 3 The purjointly c 4 The respopulat 	Its Y are attached to set E pose of the statistical ma observed in a single source ult of data integration by ion.	2 are attached to set A. tching is the analysis of the relationsh statistical matching are synthetic unit	ip between variables Y and s but representative for the	d Z not

Presentation plan	Research problem	Statistical data integration	Empirical study	Conclusions
		00000		
Statistical matching				

Rubin's approach (1986)

Databases are being concatenated. Newly created dataset $A \cup B$ contains of $n_A + n_B$ units.

<i>y</i> ₁	x ₁₁	 x _{p1}		w _{A1}
<i>Y</i> 2	x12	 x _{p2}	missing data	WA2
yn _A	×1nA	 × _{pnA}		w _{AnA}
	x11	 x _{p1}	<i>z</i> 1	w _{B1}
missing	x ₁₂	 x _{p2}	<i>z</i> ₂	w _{B2}
data		 		
	×1nB	 × _{pn} B	zn _B	w _{BnB}

Available analytical weights are adjusted in such a way that the new dataset reflects the size of the general population:

$$w'_{i_{A\cup B}} = \frac{w_{i_{A\cup B}}}{\sum_{i=1}^{s} w_{i_{A\cup B}}} N$$
⁽¹⁾

In order to estimate the value of missing data imputation methods should be applied. Weight in the available datasets are not the initial weights!

Presentation plan	Research problem	Statistical data integration	Empirical study	Conclusions
		000000		
Statistical matching				

Conditional Independence Assumption

It is assumed that the variables \mathbf{Y} and \mathbf{Z} are conditionally independent for a given \mathbf{X} . This is called the *conditional independence assumption* (CIA). This means that the density function of $(\mathbf{X},\mathbf{Y},\mathbf{Z})$ has the following property:

$$f(x, y, z) = f_{Y|X}(y|x)f_{Z|X}(z|x)f_X(x)$$
(2)

where:

 $f_{Y|X}$ – the conditional density function for Y at a given X, $f_{Z|X}$ – the conditional density function for Z at a given X, f_X – the marginal density of X.

When the conditional independence assumption is true the information on the marginal distribution of X as well as on the relationship between X and Y as well as X and Z is sufficient. This information is available in A and B datasets.

Presentation plan	Research problem	Statistical data integration	Empirical study	Conclusions
		000000		
Integration methods				

Selected methods

draws based on conditional predictive distributions - to the theoretical values resulting from the regression models values from a specified distribution are randomly drawn:

theoretical values are imputed to set A from estimated model:

$$\tilde{z}_{a}^{A} = \hat{z}_{a}^{A} + e_{a} = \hat{\alpha}_{Z} + \hat{\beta}_{ZX} x_{a} + e_{a}, e_{a} \sim N(0, \hat{\sigma}_{Z|X})$$

$$(3)$$

theoretical values are imputed to set B from estimated model:

$$\tilde{y}_b^B = \hat{y}_b^B + e_b = \hat{\alpha}_Y + \hat{\beta}_{YX} x_b + e_b, e_b \sim N(0, \hat{\sigma}_{Y|X})$$

$$\tag{4}$$

2 mixed method – a combination of both of the above; two-step algorithm:

draws based on conditional predictive distributions,

for each record in the recipient 'Nearest neighbor' is searched based on the distance between theoretical values in A and empirical in the set $B : d_{ab}(\tilde{z}_a, z_b) = min$.

Presentation plan	Research problem	Statistical data integration	Empirical study	Conclusions
		000000		
Integration methods				

Multiple imputation

- Each missing data is imputed by multiple (*m*) values.
- These *m* values are ordered in such a way that the first set of values forming a first dataset, etc.
- It means that for *m* values, *m* complete (synthetic) datasets are being created.
- Each of these sets are analyzed using standard procedures using the full information in such a way as if the imputed values were true.

Presentation plan	Research problem	Statistical data integration	Empirical study	Conclusions
		00000		
Integration methods				

Multiple imputation estimates

$$\hat{\theta}^{(t)} = \hat{\theta}(U_{obs}, U_{mis}^{(t)})$$

$$\hat{var}(\hat{\theta}^{(t)}) = \hat{var}(\hat{\theta}(U_{obs}, U_{mis}^{(t)}))$$

$$t = 1, 2, \dots, m$$

Presentation plan	n Research pro	blem Statistical data i	ntegration	Empirical study ●○○○○○	Conclusio
Data sets descrip	otion				
Data	sets descriptic	on			
Г	Characteristics	HBS	EU-SILC		ן ר
	Population	Households in Poland	Households i	n Poland	1
	Reference year	2005	2006		1
	Sampling method	two-stage, stratified	two-stage, st	ratified	1
	Subject of study	 household budget household equipment the volume of consumption of products and services 	 income situ household poverty various asp 	uation equipment ects of living conditions	
	Assumed population size	13 332 605	13 300 839		1
	Sample size	34 767	14 914		1

Even though the studies were conducted by the same organization, many common variables had to be harmonized (mainly by categories aggregation)!

Study objectives

- joint observation of households expenditures (HBS) and head of household incomes (EU-SILC);
- assessment of data quality in integrated dataset

ons

Presentation plan	Research problem	Statistical data integration	Empirical study ○●○○○○	Conclusions
Integration results				

Assessment of estimators of the arithmetic mean of variables in an integrated data set

Variable	Statistic	MI	Mixed model
	В	8.14	32.25
	W	8.80	10.06
Household	Т	17.03	42.64
expenditures	\sqrt{T}	4.13	6.53
	$t_{v,\frac{\alpha}{2}}$	2.2414093	2.2414031
	$\hat{\theta}_{MI} - t_{v, \frac{\alpha}{2}}$	1 950.86	2 005.29
	$\hat{\theta}_{MI} + t_{v,\frac{\alpha}{2}}$	1 969.36	2 034.56
	В	35.20	5.23
	W	14.68	11.88
Head of	Т	50.23	17.17
household	\sqrt{T}	7.09	4.14
income	$t_{v,\frac{\alpha}{2}}$	2.2414029	2.2414114
	$\hat{\theta}_{MI} - t_{v,\frac{\alpha}{2}}$	2 006.58	2 004.91
	$\hat{\theta}_{MI} + t_{v,\frac{\alpha}{2}}$	2 038.35	2 023.48

Presentation plan	Research problem	Statistical data integration	Empirical study	Conclusions
			00000	
Integration results				

Assessment of estimators of the correlation coefficient of not jointly observed variables in an integrated dataset

Variable	Statistic	MI	Mixed model
	В	0.00006	0.00013
	W	2E-15	2E-15
Correlation	Т	0.00006	0.00013
coefficient	\sqrt{T}	0.01	0.01
$z(\hat{\rho}^{(t)})^*$	$t_{v,\frac{\alpha}{2}}$	2.2760035	2.2760035
	$\hat{\theta}_{MI} - t_{v, \frac{\alpha}{2}}^{**}$	0.5611	0.5534
	$\hat{\theta}_{MI} + t_{v, \frac{\alpha}{2}} **$	0.5849	0.5884

* z-transformed ρ estimate: $z(\hat{\rho}^{(t)}) = \frac{1}{2} ln \frac{1 + \hat{\rho}_{YZ}^{(t)}}{1 - \hat{\rho}_{YZ}^{(t)}}; z(\hat{\rho}^{(t)})$ phas a normal distribution with the constant variance $\frac{1}{n-3}$

 $\overline{n-3}$ ** The confidence intervals are given for ρ .

Presentation plan	Research problem	Statistical data integration	Empirical study	Conclusions
				000
Conclusions				

Benefits

- one can obtain joint observation of variables not jointly observed in any of the available studies, which may
 reduce respondent burden and decrease number of refusals and non-response,
- adding drawn residual values to theoretical values of regression model allows to determine the of estimators with good properties,
- presented methodological variations return similar results,
- the unknown correlation is reflected with similar quality by each of the methods.

Problems

- untestable CIA,
- loss of information when harmonizing,
- selection of "good" model of integration,
- the need for a detailed analysis for each variable Y and Z.

Presentation plan	Research problem	Statistical data integration	Empirical study	Conclusions
				000
÷				

Presentation plan	Research problem	Statistical data integration	Empirical study	Conclusions
				000
Literature				

Literature

- AI P., Bakker B. 2000, *Re-engineering social statistics by micro-integration of different sources; an introduction* [in:] Integrating administrative registers and household surveys, vol. 15, Netherlands Official Statistics, Voorburg/Heerlen
- van der Laan P. 2000, Integrating administrative registers and household surveys, [in:] Integrating administrative registers and household surveys, vol. 15, Netherlands Official Statistics, Voorburg/Heerlen
- Linder F. 2004, The use of administrative registers and sample surveys in the Dutch Census of 2001 [in:] The Dutch Virtual Census of 2001. Analysis and Methodology, Statistics Netherlands, Voorburg/Heerlen
- Rubin D.B. 1986, Statistical matching using file concatenation with adjusted weights and multiple imputations, Journal of Business and Economic Statistics 4
- Wallgren A., Wallgren B. 2007, Register-based Statistics. Administrative Data for Statistical Purposes, John Wiley and Sons Ltd.
- D'Orazio M., Di Zio M., Scanu M. 2006, Statistical Matching. Theory and Practice, John Wiley & Sons Ltd., England
- Raessler S. 2002, Statistical Matching. A Frequentist Theory, Practical Applications, and Alternative Bayesian Approaches, Springer, New York, USA
- Herzog T., Scheuren F., Winkler W. 2007, Data Quality and Record Linkage Techniques, Springer, New York, USA
- Moriarity C. 2009, Statistical Properties of Statistical Matching. Data Fusion Algorithm, VDM Verlag Dr. Mueller, Saarbrucken, Deutschland
- Cohen M.L. 1991, Statistical matching and microsimulation models [in:] Improving Information for Social Policy Decisions: The Uses of Microsimulation Modeling, Vol. II: Technical Papers. Washington, DC: National Academy

