

Quality of linked firm-level and micro-aggregated datasets: The example of the ESSLait Micro Moments Database

Diana Iancu – Statistics Norway Eva Hagsten – Statistics Sweden Patricia Kotnik – University of Ljubljana

European Conference on Quality in Official Statistics June 2014, Vienna

Introduction and roadmap

- The impact of stepwise linking and aggregation of information from firm-level datasets in several countries on the representativeness and usefulness of indicators from the ESSLait Micro Moments Database (MMD)
- Distributed microdata research (DMD) and sources
- Data linking and statistical properties of linked datasets
- Overlap across samples and over time
- Representativeness ex-post re-weighted variables
 - Use in descriptive statistics
 - Use for marginal analyses
- Final remarks

ICT Impacts (2006) 14 European countries

DMD Method with "Common Code" software

- 1. **Business Register BR:** industry code, age, employment
- 2. **Production Statistics PS:** production values, exports, capital, employment, pay, educational achievement, ownership, affiliation
- 3. E-commerce Survey EC and **Community Innovation Survey IS**

- 1. Business Register BR: industry code, age, employment
- 2. Production Statistics PS: production values, exports, capital, employment, pay, educational achievement, ownership, affiliation
- 3. E-commerce Survey EC and Community Innovation Survey IS

Data linking and statistical properties of linked datasets

- Papers dealing with selection bias and sample representativeness in linked datasets: Chesher and Nesheim (2006), Ritchie (2004), Fazio et al. (2006)
- Multiple sources of bias

Statistics Norway

- Longitudinal data integrity issues
- Long-term solutions to dealing with sample bias in linked datasets
- Fazio et al. (2006) short-term approaches:
 - Re-weighting
 - Conditioning variables
 - Banded regressions
- Our paper deals with the representativeness of single indicators in the process of linking different microdata sets in the short-run

Coverage over time – Number of firms per sample, for the source datasets (in thousands)

- ÜK

Statistics Norway

- NO

Coverage across samples, throughout the merging procedure (proportion of BR)

Statistics Norway

Attrition

Statistics Norway

• Non-survival rates between 2003 and 2010 in the PS and EC

ICT indicators across samples

- Average ICT intensities in merged datasets, by industry across countries
- EC 2010=100

Statistics Norway

ICT indicators across samples

Average ICT use in manufacturing (excluding ICT) across samples, as share of firms with e-sales

2010. Index, EC 2010=100

Ex-post control of selection bias

Original weights become inappropriate after linking

tatistics Norway

- Reweighting the variables become more representative of the underlying universe of firms
- Each descriptive Micro Moments dataset includes the aggregated average value of each variable as well as three different sets of re-weights for key variables:
 - First set: based on data available in the business register
 - Second set: constructed using firm size (measured as number of employees) at the sample and population levels
 - Third set: a combination of the business register and the firm size weights

Ex-post control of selection bias

Statistics Norway

 Comparison of mean values for employment for the PS and PSEC samples, by different reweighting approaches (in thousands):

Country	PS, BR	PSEC, no	PSEC, BR	PSECIS, no	PSECIS, BR
Country	reweighting	reweighting	reweighting	reweighting	reweighting
DK	1 010	509	1 070	207	413
IE	766	237	741	69	308
NO	1 110	468	1 140	221	635

 Comparison of mean values for AESELL for the PS and PSEC samples, by different reweighting approaches:

Country	EC, BR	PSEC, no	PSEC, BR	PSEC, empl.	PSEC, BR &
Country	reweighting	reweighting	reweighting	reweighting	empl. rewg.
FI	0.20	0.31	0.20	0.55	0.44
NO	0.27	0.34	0.27	0.46	0.40
SE	0.25	0.35	0.25	0.60	0.47

Industry-level analysis

tatistics Norway

- Consider the type of relationship examined when deciding which set of weights should be used (if any):
 - firm-level relationships un-weighted variables can be used
 - macroeconomic relationships employment-based weights seem the best at emphasizing the relevance of larger firms
- Comparison of reweighting schemes in pooled regressions:

Dependent variable. Labour productivity (appropriately weighted)										
Reweighting scheme \ Sample	PS	PSEC	PSIS	PSECIS						
HKpct, no reweighting	-0.18	0.12	0.24	0.13						
(t-stat)	(1.51)	(0.84)	(1.57)	(0.84)						
HKpct, BR reweighting	-0.46	-0.14	-0.39	-0.60						
(t-stat)	(3.38)	(0.56)	(1.35)	(2.55)						
HKpct, empl. reweighting	0.38	0.65	0.72	0.84						
(t-stat)	(3.40)	(5.11)	(5.65)	(5.96)						
HKpct, BR & empl. reweighting	0.28	0.39	0.35	2.55						
(t-stat)	(2.55)	(3.06)	(2.45)	(3.28)						

Dependent variable: Labour productivity (appropriately weighted)

Firm-level analysis

• Firm-level regressions with ICT intensive human capital across samples

Dependent variable: (log) Labour productivity									
Sample									
	PS PSEC								
Country	FI	NO	SE	FI	NO	SE			
HKITpct	0.260	0.178	0.135	0.280	0.307	0.318			
t-stat	(43.31)	(30.70)	(26.46)	(13.00)	(5.17)	(8.06)			
R-squared	0.884	0.751	0.602	0.879	0.899	0.808			
Observations	171983	430460	551106	10651	3722	7344			
BROADpct				0.045	0.041	0.101			
t-stat				(4.57)	(2.54)	(8.32)			
ECpct				0.015	0.016	-0.001			
t-stat				(1.28)	(1.34)	(-3.26)			

 Merging one smaller sample survey with a larger dataset or census does not seem to distort regression estimates, but may change them slightly

Firm-level analysis

• Firm level regressions with ICT intensity variable across samples

	Country	AT	DK	FI	FR	IE	IT	LU	NL	NO	SE	SI	UK
BROADpct	coef_PSEC	0.068	-0.001	0.011	0.049	0.209	0.117	0.113	0.058	0.015	0.028	-0.004	0.165
	coef_PSECIS	0.026	0.003	0.017	0.061	0.308	0.077	0.139	0.083	0.029	0.063	-0.004	0.175
LnW	coef_PSEC	0.964	0.969	0.915	0.974	0.862	1.024	0.83	0.872	0.978	0.973	1.185	0.979
	coef_PSECIS	1.049	0.96	0.942	0.989	1.021	1.095	0.646	0.885	0.99	1.013	1.253	1.006
R-squared	PSEC	0.92	0.93	0.93	0.95	0.83	0.89	0.79	0.92	0.94	0.94	0.91	0.87
	PSECIS	0.94	0.92	0.91	0.95	0.84	0.91	0.84	0.9	0.92	0.94	0.93	0.85

Conclusions

- Indicators become upward biased as more surveys are linked
- Specific values of ICT indicators appear less biased:
 - if the PS in a country is large or a census, if a sample co-ordination system is in use
 - for ICT and manufacturing firms
- Re-weighting can shift variable values from the smaller linked dataset closer to the larger dataset
- Inconclusive results for the use of re-weighting in industry-level regressions
- Firm-level estimations seem robust against selection bias (Fazio et al. (2006), Ritchie (2004))
- The major effect is a slightly higher estimate that does not significantly change the interpretation of results