Outline

From Micro-Data to Macro-Data: Symbolic Data Analysis

Paula Brito

Fac. Economics & LIAAD-INESC TEC, University of Porto, PORTUGAL

European Conference on Quality in Official Statistics (Q2014) Vienna, June $2^{nd} - 5^{th}$ 2014

- 2 Analyzing Unemployment Data
- Optimized Potential New Applications in Official Statistics

4 Conclusion

Symbolic data

Analyzing Unemployment Data Potential New Applications in Official Statistics Conclusion References

Analyzing Unemployment Data

Conclusion

Symbolic data

Analyzing Unemployment Data Potential New Applications in Official Statistics Conclusion References

Classical data analysis :

Data is represented in a $n \times p$ matrix each of *n* individuals (in row) takes one single value for each of *p* variables (in column)

	Nb. children	Weight (Kg)	Gender	Education
Albert	2	52	М	2
Barbara	1	55	F	3
Charles	0	65	М	2
Deborah	3	60	F	1

The data

Symbolic Data Analysis (SDA) approach :

to take into account variability inherent to the data

Variability occurs when we have

- $\bullet\,$ Data about students, but : analyse the schools not the students
- Data about attendants, but : analyse the cultural events not each individual attendant
- Data about purchases, but : analyse the clients (or classes of clients) not the individual purchases
- Data about people, but : analyse the parishes, the cities, sociological groups not the individual citizens

Variable values are

sets, intervals

distributions on an underlying set of sub-intervals or categories

$\mathbf{Micro-data} \longrightarrow \mathbf{Macro-data}$

Symbolic data

Analyzing Unemployment Data Potential New Applications in Official Statistics Conclusion References

Example :

Data for three cultural events

(e.g. museum exhibitions, theatre/cinema festival,...)

Event	Age	Job	Salary	Event
	category	group		evaluation
A	[15, 40]	{manager (0.20), clerk (0.30),	{[0, 1.5[, 0.25; [1.5, 2.5[, 0.45;	{1, 0.05; 2, 0.30; 3, 0.40;
		scien-lib (0.1), student (0.40)}	$[2.5, 4[, 0.25; \ge 4, 0.05]$	4, 0.15; 5, 0.10}
В	[25, 55]	{manager (0.20), clerk (0.25),	$\{[0, 1.5[, 0.15; [1.5, 2.5[, 0.35;$	$\{1, 0.05; 2, 0.25; 3, 0.30;$
		scien-lib (0.4), student (0.15)}	$[2.5, 4[, 0.30; \ge 4, 0.20]$	4, 0.25; 5, 0.15}
С	[12, 70]	{manager (0.20), clerk (0.35),	{[0, 1.5[, 0.20; [1.5, 2.5[, 0.40;	{1, 0.10; 2, 0.20; 3, 0.35;
		scien-lib (0.20), student (0.25)}	$[2.5, 4[, 0.30; \ge 4, 0.10]$	4, 0.25; 5, 0.10}

Sources of symbolic data

- Aggregation of micro-data: contemporary, temporal
- Description of abstract concepts

Sources of symbolic data: Aggregation of micro-data

Name	Ammount	Event	Payement
A	5	cinema	Cash
A	25	concert	Visa
В	20	theatre	Electron
A	15	concert	Cash
C	40	theatre	Visa
В	8	cinema	Electron
A	10	museum	Cash
C	30	concert	Mastercard

Temporal aggregation

Name	Ammount	Event	Payement
A	[5, 25]	${cinema(1/3), theatre(0), concert(1/3), museum(1/3)}$	{Cash, Visa}
В	[8, 20]	${cinema(1/2), theatre(1/2), concert(0), museum(0)}$	{Electron}
С	[30, 40]	$\{cinema(0), theatre(1/2), concert(1/2), museum(0)\}$	{Visa, Mastercard}

< 17 ▶

글 눈 옷 글 눈

Sources of symbolic data: Aggregation of micro-data

Communityname	State	perCapInc	pctPoverty	persPerOccupHous	pctKids2Par
Aberdeencity	SD	11939	12,2	2,35	76,25
Aberdeencity	WA	11816	18,3	2,34	64,05
Aberdeentown	MD	13041	10,66	2,61	60,79
Aberdeentownship	NJ	19544	3,18	2,86	79,31
Adacity	OK	10491	22,93	2,21	63,11
Adriancity	MI	11006	20,65	2,61	61,92
AgouraHillscity	CA	27539	3,53	3,08	86,65
Aikencity	SC	15619	15,69	2,48	64,51
Akroncity	OH	12015	20,48	2,42	55,76
Alabastercity	AL	13645	5,65	2,94	80,57
Alamedacity	CA	19833	6,81	2,36	70,29

Contemporary aggregation \downarrow

State	perCapInc	pctPoverty	persPerOccupHous	pctKids2Par
ALabama	[5820, 39610]	[2, 44]	[2, 3]	[30, 90]
ARkansas	[7399, 15325]	[4, 42]	[2, 3]	[45, 81]
AriZona	[6619, 62376]	[3, 43]	[2, 4]	[57, 90]
CAlifornia	[5935, 63302]	[1, 32]	[2, 5]	[47, 90]

(4 同) ト 4 ヨ ト 4 ヨ ト

Symbolic Variable types

- Numerical (Quantitative) variables
 - Numerical single-valued variables
 - Numerical multi-valued variables
 - Interval variables
 - Histogram variables
- Categorical (Qualitative) variables :
 - Categorical single-valued variables
 - Categorical multi-valued variables
 - Categorical modal variables

	Y ₁	 Y_j	 Y _p
<i>s</i> ₁	$[I_{11}, u_{11}]$	 $[I_{1j}, u_{1j}]$	 $[I_{1p}, u_{1p}]$
Si	$[I_{i1}, u_{i1}]$	 $[I_{ij}, u_{ij}]$	 $[I_{ip}, u_{ip}]$
Sn	$[I_{n1}, u_{n1}]$	 $[I_{nj}, u_{nj}]$	 $[I_{np}, u_{np}]$

・ロン ・四 と ・ ヨン ・ ヨン

æ

Examples

Albert, Barbara and Caroline are characterized by the amount of time (in minutes) they need to go to work, which varies from day to day :

	Time
Albert	[15, 20]
Barbara	[25, 30]
Caroline	[10, 20]

Age of attendants in cultural events :

	Age Attendants
Event A	[15, 40]
Event B	[25, 55]
Event C	[12, 70]

Interval data : Survey data application

Gender, Age, Level of Education, Job Category, Income and debt variables - Household Income (HI), Debt to Income Ratio (\times 100) (DIR), Credit Card Debt (in thousands) (CCD), Other Debts (OD) 5000 observations:

Gender	Age	Education	Job	HI	DIR	CCD	OD
Male	22	High school degree	Services	40	10	3	2
Male	45	College degree	Sales and Office	100	15	8	7
Female	30	Some college	Managerial	50	20	2	1
			and Professional				

Individual observations aggregated on the basis of Gender , Age Category , Level of Education and Job Category

Interval data: Survey data application

Group	HI	DIR	CCD	OD
Male, 18-24	[15, 61]	[0.1, 23.4]	[0.0, 6.57]	[0.02, 7.71]
High school degree, Service				
Male, 35-49, College degree,	[19, 190]	[1.4, 20.4]	[0.04, 16.6]	[0.12, 15.39]
Sales and Office				
Female, 25-34, Some college	[17, 100]	[0.8, 31.7]	[0.05, 6.57]	[0.09, 7.65]
Managerial and Professional				

A 1

글 > 글

Distribution-Valued Data

Keeping more information (requires more data at the micro level) Example : Data for three cultural events

Event	Job	Event
	category	evaluation
A	{manager (0.20), clerk (0.30),	$\{1, 0.05; 2, 0.30; 3, 0.40;$
	scien-lib (0.1) , student (0.40) }	4, 0.15; 5, 0.10}
В	{manager (0.20), clerk (0.25),	$\{1, 0.05; 2, 0.25; 3, 0.30;$
	scien-lib (0.4), student (0.15)}	4, 0.25; 5, 0.15}
С	{manager (0.20), clerk (0.35),	{1,0.10; 2, 0.20; 3, 0.35;
	scien-lib (0.20), student (0.25)}	4, 0.25; 5, 0.10}

Histogram-valued variables: Example

Studying the performance of some administrative offices - time people have to wait before being taken care of:

Office	Waiting Times (minutes)
А	5, 10, 15, 17, 20, 20, 25, 30, 30, 32, 35, 40, 40, 45, 50, 50
В	5, 8, 10, 12, 15, 20, 25, 25, 30, 32, 35, 35, 45, 52, 55, 60

Average waiting time : 29.0 minutes for both offices

Description in terms of histograms :

Office	Waiting Times (minutes)
A	$\{[0, 15[, 0.125; [15, 30[, 0.3125; [30, 45[, 0.375; [45, 60], 0.1875]$
В	$\{[0, 15[, 0.25; [15, 30[, 0.25; [30, 45[, 0.25; [45, 60], 0.25]$

Histogram-valued variables: Example

Histograms :

990

Histogram-valued variables: Example

- Assumption : within each sub-interval [<u>I</u>_{ijℓ}, <u>T</u>_{iℓ}[the values of variable Y for observation s_i, are uniformly distributed
- For each variable Y the number and length of sub-intervals in $Y(s_i)$, i = 1, ..., n may be different
- Interval-valued variables : particular case of histogram-valued variables: $Y(s_i) = [l_i, u_i] \rightarrow H_{Y(s_i)} = ([l_i, u_i], 1)$

In general : when it is wished to analyse data at a higher level (groups), rather than at individual level

- \bullet Official data: confidentiality issues \rightarrow aggregation
- Survey data
- Big databases, e.g., purchases per client, phone calls per person, prescriptions per patient or per doctor
- Analysis of abstract concepts as such

• . . .

Methods for multivariate data analysis

- Interval-valued variables: a special case of histogram-valued variables
- Methods first developed for interval-valued variables:
- Greater effort in addressing and designing methods for interval data

A large number of methods have to this day been developed for multivariate analysis, including :

- Clustering Partitioning (crisp, fuzy), Hierarchical, SOM,...
- Classification LDA, Decision tres, Neural networks,...
- Factorial analysis PCA, Generalized canonical analysis
- Multiple Regression
- Time series analysis

2 Analyzing Unemployment Data

Conclusion

Analyzing Unemployment Data: Methodology

Using a symbolic data analysis approach

- we aggregated the micro-data from the Employment Survey
- in social groups based on age, gender and education
- obtaining 96 social groups

Cluster analysis

- Tranversally
- Through time

900

Image: A image: A

э

The descriptive variables are :

- Unemployment time : Numerical \longrightarrow Interval-valued
- \bullet Satisfaction : Categorical \longrightarrow Modal categorical
- \bullet Sector : Categorical \longrightarrow Modal categorical
- Job situation : Categorical \longrightarrow Modal categorical
- \bullet Employment situation : Categorical \longrightarrow Modal categorical
- \bullet Second activity : Categorical \longrightarrow Modal categorical
- \bullet Revenue source : Categorical \longrightarrow Modal categorical
- \bullet Reason for abandon : Categorical \longrightarrow Modal categorical

The data

VSTAR - IE2008_17	isds E	sc F1	F2	F3	F4	F5	F6 F7	F8	F9	SPACE	
	a 世界 2	10o 211 考 Deca	s 🔲 🚦 Rillior Bina .	i -Juni i -Galain ()			Sulphasses	Window	Taush Pad	Zeen	
	tempo_actividad	Tempo_desempreg		Fonte_de	_rendim		1				
Masculino/>=65/Básic	[30.00 : 86.00]	[24.00:24.00]	(0.95), Depen (0.00), Sa	alár (0.01), Lucro	(0.03), Espec (0.00	l), Subsi (0.00), Re	ndi Refor (0.46), Outra (0.01), D	oenç (0.28), Refor	(0.15), Outre	
Feminino/45-64/Básic	[0.00:57.00]	[1.00:372.00]	(0.31), Lucro (0.07), Es	pec (0.05), Subs	i (0.05), Rendi (0.02	2), Subsi (0.01), Tr	Pa Refo	r (0.02), Outra (0	.11), Doenç (0.32),	Refor (0.08	
Feminino/>=65/Básico	[8.00:88.00]	Missing Value	Refor (0.91), Depen (0.	06), Salár (0.00),	Lucro (0.02), Espe	c (0.01), Tr Pa (0.0	00) Refo	r (0.31), Outra (0	.07), Doenç (0.40),	Refor (0.10	
Feminino/45-64/Super	[8.00:53.00]	Missing Value	Refor (0.	23), Depen (0.01)	Salár (0.72), Lucri	0 (0.04)			Refor (0.65), Outra	
Feminino/>=65/Superi	[35.00:64.00]	Missing Value	Re		Refor (0.70)						
Masculino/45-64/Bási	[10.00 : 58.00]	[0.00 : 159.00]	(0.52), Lucro (0.12), Es	Pa	Refor (0.07), Outra (0.01), Doenç (0.33), Refo						
Feminino/25-44/Básic	[0.00:35.00]	[1.00:325.00]	, Salár (0.61), Lucro (0.	01), Outr). Outra (0.11), Doenç (0.15), Refor (0.00), Outra (0.02)						
Masculno/15-24/Secu	[0.00:11.00]	[1.00:15.00]	Refor (0.00), De	pen (0.62), Salár	(0.35), Lucro (0.01), Subsi (0.01)					
Masculno/15-24/Supe	[0.00:6.00]	Missing Value	De	pen (0.40), Salár	(0.55), Lucro (0.05)					
Masculino/45-64/Secu	[15.00 : 53.00]	[9.00:35.00]	Refor (0.15), De	pen (0.03), Salár	(0.65), Lucro (0.11), Subsi (0.06)		R	tefor (0.08), Doenç	(0.16), Refo	
Feminino/45-64/Secun	[7.00:46.00]	[0.00:123.00]	Refor (0.19), Depen (0.13), Salár (0.58), Lucro (0.05), Subsi (0.04)					Refor (0.05), Outra (0.13), Doenç (0.15), Refor (0.30)			
Masculino/25-44/Bási	[1.00:37.00]	[1.00 : 97.00]	(0.75), Lucro (0.09), Espec (0.01), Subsi (0.02), Rendi (0.00), Subsi (0.00), Tr Pa					Outra (0.01), Doenç (0.26), Refor (0.02), Outra (0.04			
Feminino/<15/Básico	Missing Value	Missing Value		Missing	Value						
Feminino/<15//Norte	Missing Value	Missing Value		Missing	Value						
Feminino/15-24/Básic	[0.00:12.00]	[1.00:61.00]	(0.01), Depen (0.69), S	alár (0.28), Subsi	(0.00), Rendi (0.01), Subsi (0.00), Tr	Pai		Outra (0.15),	Outra (0.05	
Feminino/15-24/Secun	[0.00:8.00]	[0.00:10.00]	Refor (0.	01), Depen (0.72)	Salár (0.26), Subs	ii (0.00)				Estur	
Feminino/25-44/Secun	[0.00:28.00]	[2.00 : 88.00]	(0.01), Depen (0.18), S	alár (0.73), Lucro	(0.04), Subsi (0.03), Rendi (0.01), Su	bsi	Outra (0	.05), Doenç (0.08),	Outra (0.11	
Feminino/15-24/Super	[0.00:10.00]	[46.00:46.00]		Depen (0.36)	Salár (0.64)						
Masculino/15-24/Bási	[0.00:18.00]	[1.00:33.00]	(0.01), Depen (0.57), S	alár (0.41), Lucro	(0.01), Subsi (0.00), Tr Pa (0.00), Aju	da i		Doenç (0.10),	Outra (0.15	
Feminino/25-44/Super	[0.00:26.00]	[2.00:80.00]	Depen (0.13), Salár (0.	81), Lucro (0.03),	Subsi (0.01), Rend	ti (0.00), Subsi (0.1	00),		Outra (0.09),	Doenç (0.09	
Masculino/<15/Básico	Missing Value	Missing Value		Missing	Value						
Masculino/25-44/Supe	[0.00:27.00]	[2.00:100.00]	Depen (0.09), Si	alár (0.79), Lucro	(0.09), Subsi (0.01)), Subsi (0.01)				Estuc	
Masculino/<15//Norte	Missing Value	Missing Value		Missing	Value						
Masculno/45-64/Supe	[12.00:48.00]	[9.00 : 19.00]	Refor (0.12), De	pen (0.01), Salár	(0.76), Lucro (0.09), Subsi (0.02)			1	Refor (0.33)	
Masculino/25-44/Secu	[0.00:32.00]	[1.00:46.00]	(0.16), Salár (0.74), Lu	cro (0.06), Espec	(0.01), Subsi (0.02	2), Subsi (0.01), Tr	Pa		Outra (0.06),	Doenç (0.11	
Peadu											

Q2014 P. Brito

Analyzing Unemployment Data

Conclusion

Aggregating Surveys

Symbolic Data Analysis allows for the merging of different surveys in the same population:

- Aggregate the 1st survey on given variables, e.g. age, X gender
- Aggregate the 2nd survey on the same variables
- Therefore, the groups formed are the same
- Merge the two surveys : for each group formed, add the variables of one survey to the variables of the other survey

Aggregating Surveys

Symbolic Data Analysis allows for the merging of similar surveys from different populations - e.g., different countries:

- Aggregate the 1st survey on the population (e.g., country) and other given variables, e.g. age, X gender
- Aggregate the 2nd survey on the same variables
- Therefore, the groups formed in each population are the same
- Merge the two surveys : merge the groups of one survey with those of the other survey: add rows
- The variables are the same in both surveys, so nothing to do with the columns

4 Conclusion

Concluding Remarks

Symbolic Data Analysis allows to

- Consider big data-sets
- Analyse data at the required level, keeping intrinsic variability information
- Use surveys from different years / countries (not necessarily the same people !)

Conclusion

Books and Main Papers

Bock, H.-H.; Diday, E. (2000): Analysis of Symbolic Data: Exploratory methods for extracting statistical information from complex data. Berlin-Heidelberg: Springer-Verlag.

Billard, L., Diday, E. (2007): Symbolic Data Analysis: Conceptual Statistics and Data Mining. Wiley.

Diday, E., Noirhomme-Fraiture, M. (2008): *Symbolic Data Analysis and the SODAS Software*. Wiley.

Special Issue of *Statistical Analysis and Data Mining*. Vol. 4, Issue 2, April 2011. Wiley, on behalf of the American Statistical Association.

Billard, L. and Diday, E. (2003). From the statistics of data to the statistics of knowledge: Symbolic Data Analysis. *Journal of the American Statistical Association*, 98 (462), pp. 470487.

Noirhomme-Fraiture, M. and Brito, P. (2011). Far beyond the classical data models: Symbolic data analysis. *Statistical Analysis and Data Mining*, 4(2), 157–170.