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Abstract 
 

The calibration estimator suggested by [1] uses sample and/or population level 

information on a set of auxiliary variables to adjust the design weights in an effort 

to reduce nonresponse bias. The version of the estimator usually applied is the 

standard weight formulation where the instrument variable vector is defined as 

the auxiliary variable vector. In this paper the objective is to reduce bias by 

choosing an instrument variable vector different from the auxiliary variable 

vector. A condition on the instrument vector for approximately zero bias is 

derived. The condition gives a connection between the [1] calibration estimator 

and the procedure proposed by [2] for dealing with selection bias in regression 

analysis. This in turn suggests an estimator and instrument vectors giving 

approximately zero bias. Results from a simulation study illustrates the finite 

sample properties of the new estimator. 

1. Introduction 

Nonresponse in sample surveys is an increasing problem and different methods for adjusting 

weights in the estimation stage have been proposed (e.g. [3]). One part of the literature on 

calibration estimation is devoted to its potentials to adjust design weights for nonresponse 

bias ([1], [4-7]). Although the calibration approach can be used to define estimators which are 

approximately unbiased and consistent under mild conditions in the full sample case, 

calibration estimators are biased and inconsistent under nonresponse in general. 

Consistency of calibration estimators can be obtained in particular cases. One is 

considered by [4-6] who study calibration estimators when the unit’s response probabilities 

are known functions of a known model variable vector and an unknown parameter vector. 
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One choice of functional form is to use the inverse of the response probability function, 

interpreting the response set as an outcome of two-phase sampling. 

This paper focuses on the consistency properties of the linear calibration estimator 

under the quasi-randomization framework ([8]). The linear calibration estimator implies a 

restrictive form of the response probability function, whereby interest here is on selection of 

appropriate instrument variables for consistency. A condition on the instrument vector for 

consistency is given and a modification of the linear calibration estimator is suggested. 

Consistency of the new estimator discussed and, two examples of the estimator are 

presented and their finite sample properties are illustrated with results from a simulation 

study. 

The modified linear calibration estimator is defined in the next section and a condition 

on the instrument vector for consistency is given. Section 3 contains results from the 

simulation study and final comments contained in the closing section. 

2. The calibration estimator 

Consider a fixed, finite population U  of N units and a non-random, scalar study variable ky , 

Uk∈ . A probability sample Us ⊂  with expected sample size n(N) is selected from the 

population, using a probability sampling design )(sp , with the purpose of estimating the 

population total ∑= U kyY .  

Due to nonresponse observations are only obtained for a subset of the sample sr ⊂ . 

Whether the sampled units respond or not are assumed results of a random trial beyond 

control of the researcher. The conditional probability of a response set r  given a sample s  is 

denoted )( srq . The first order inclusion probability of unit Uk∈  is denoted kπ , 1−= kkd π  

denotes the corresponding design weight and ),Pr( sskrkk ∈∈=θ  denotes the response 

probability. 

Let kx  denote a column vector of non-random auxiliary variables satisfying the unity 

condition 1=k
t xµ  for some constant vector µ . This condition is satsisfied if e.g. kx  

includes a constant term. The auxiliary vector kx  is assumed known for all units in r  and its 

population total is denoted as ∑= U kxX . Here the population totals may either be known or 

estimated and the vector X~  is used to denote the vector X  where some or all elements are 
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replaced by estimates. In addition to kx  an instrument vector kz  of the same dimension as kx  

is assumed known for all units in the response set r. (Note kk xz =  is one option.) 

With these definitions the population regression coefficient vector 

( ) ∑∑ −
=

U kkU
t
kkU yxxxxB 1)(  yields the population regression errors )(xBxye U

t
kkk −= . 

These errors sum to zero and )(xBXY U
t= . 

The calibration estimator suggested is 

∑= r kkC ywŶ       (1) 

where the calibration weights kw  are defined by the system  

∑=
=

=

r kk

k
t
rk

kkk

xwX

zv
dw

~
λ

ν

 

This system yields the calibration weights 

( ) kkr
t
kkk

t
k zdxzdXw 1~ −∑=  

This calibration estimator equals the calibration estimator suggested by [1] when the 

instrument vector satisfies a unity condition 1=k
t zq  for some vector q. This assumption is 

not made here since it restricts the prospects of finding an instrument vector yielding a 

consistent calibration estimator.  

One example of the estimator (1) is kkk xz φ=  where 1−= kk θφ . Then 

0==∑∑ U kkU kkk exezθ  by definition of ke  and the calibration estimator (1) equals 

( ) )(ˆ~~ˆ 1 xBXyxxxXY r
t

kkkr r
t
kkk

t
C φφφ ==∑ ∑ −

 

where ( ) ∑∑ −
=

r kkkr
t
kkkr yxxxxB φφφ

1)(ˆ . This example corresponds to the response 

propensity GREG estimator.  

Another example is obtained by adapting Heckman’s sample selection model ([2]). 

For the reponse set, consider an assisting model of the form kkU
t
kk Bxy ωη ++= , where kη  

is defined as a “systematic” component such that ∑∑ =
U kkkU kkk exx θηθ , and kω  is an 

“irregular” component such that 0=∑U kkk x ωθ  and 0=∑U kkk ωηθ . For the population, 

define the instrument δηkkk xz −= , where ( ) ∑∑ −
=

U kkkU kk xηθηθδ
12  is a vector with 
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population fits of θ  weighted, through the origin, LS regressions of elements in kx  on kη . 

(Note here that δ  is a vector with slope coefficients, one for each element in kx  when 

regressed on kη .) These instruments have the property 0)( =+∑U kkkk z ωηθ  whereby 

( ) ∑∑ −
=

r kkr
t
kkr yzxzzB 1)(ˆ  is consistent for )(xBU . 

If the instrument vector kz  satisfies the asymptotic condition 

0)/1(lim =∑∞→
NU kkkN ezNp θ  for a sequence of populations ( 321 UUU ⊂⊂ ) the 

calibration estimator (1) can be shown consistent under some additional mild conditions. 

However, in practice the instrument vectors kz  are usually not known and replaced by 

estimates kz~ . Consistency of the estimator (1) with estimated instruments can be shown 

under the assumption ωΜ<−∈ kkUk zz~max  where Μ  is a finite positive constant, and 

)1(po=ω , as ∞→N , is a random scalar term.  

Let )~(ˆ zYC  denote the estimator (1) with estimated instruments. Then we have the 

following proposition:  

Proposition  (Consistency of )~(ˆ zYC ) 

Assume 0)/1(lim =∑∞→
NU kkkN ezNp θ , ωΜ<−∈ kkUk zz~max  where ∞<<Μ< κ0

and 0lim =∞→ ωNp , and 0/)~(lim =−∞→ NXXp N . Adding appropriate conditions on 

)(sp  and )( srq , and with bounded values on ky  kx  and kz , the calibration estimator 

(1) is consistent for Y , i.e. 0/))~(ˆ(lim =−∞→ NYzYp CN . 

5. Numerical Illustration 

The calibration estimator (1) is here illustrated with two examples of instrument vectors. The 

first is the response propensity GREG estimator with the response probability specified by a 

normal cdf )( αθ t
kk uΦ= . Here ku  is a real valued bounded vector ( ∞<< κku ) of variables 

and α  is a corresponding real valued vector of unknown, fixed parameters. For application 

the estimated instruments k
t
kk xuz 1)~(~ −Φ= α  are calculated with the Probit ML estimate α~ . 

In the second example the instruments are specified with δηkkk xz −=  and 

)(/)( ααη t
k

t
kk uuf Φ= , the ratio of the standard normal pdf to its cdf. Replacing for the Probit 
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ML estimator α~  and the LS estimates ( ) ∑∑ −
=

r kkr k xηηδ
12~  yields the instruments 

δη ~~
kkk xz −= . The estimator ( ) ∑∑ −

=
r kkr

t
kkr yzxzzB ~~)~(ˆ 1

 is then equal to the two-step 

estimator suggested by [2]. 

A small simulation study is used to illustrate the empirical properties of the estimator 

(1) based on the instruments defined in this section. For comparison the Särndal and 

Lundström [1] estimator is also included. Population data is simulated from the following 

model:  

ϕααα

εββ

+++=

++=

uyR
xy

210
*

10   

where y  represents the study variable, x  and u  are auxiliary variables with known 

population totals and *R  is a variable generating a response if 0* >R  and a non-response if 

not. The variables x  and u  are independently generated from uniform distributions in 

32,0( ), yielding 3)()( == uExE  and 1)()( == uVxV . The variables ε  and ϕ  are 

independently generated from distributions with zero means and variances 1. The parameter 

1α  is set to control the correlation ρ  between ϕεαχ += 1  and ε , governing the strength of 

the relation between the study variable and the nonresponse mechanism. The parameters 1β  

and 2α  are used to control the population R2s in the regression model for the study variable 

and the regression of *R  on x  and u . Finally, 50 =β  while 0α  is used to control the 

response rate. The following two sets of population models are used in the simulations. 

i) Population model Norm(ε )/Norm(ϕ ): The population R2s in the regression 

model for the study variable and in the regression *R  on x  and u , are both 0.5. 

The variables ε  and ϕ  are both generated from normal distributions. Expected 

response rates are 60%.  

ii) Population model BinU(ε )/U(ϕ ): As in i) with ε  and ϕ  generated from uniform 

distributions and with a dichotomized study variable 1(y>6,5). Response rates are 

around 58%. 

For each of the two population models, finite populations 321 UUU ⊂⊂  of sizes 

N=2000, 8000, 15000 units are generated. For the generated populations, samples of sizes 

n=N/10 are drawn with SRS, without replacement, and response sets are defined using the 

generated values on *R . The study variable and the auxiliary variables are kept fixed in the 
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population, from which the sample is drawn, while the response indicator is randomly 

generated in each replication for the units drawn to the sample. For each generated 

population, samples and response sets are replicated 1000 times. 

The linear calibration estimator ([1]) is applied with standard weihgts (i.e. kk xz = ) in 

two versions; one using the auxiliary vector ) ,1( x  (denoted as )1(ˆ xYW  below) and one using 

the auxiliary vector ), ,1( ux  ( )2(ˆ xYW ). For the estimator (1), the auxiliary vector ) ,1( x  is 

used and the instruments defined above are calculated using )ˆˆˆ(/1ˆ
210 ux sss αααφ ++Φ=  and 

)ˆˆˆ(ˆ 210 ux sss αααηη ++= , respectively. These estimators are below denoted as )1(ˆ zYC  and 

)2(ˆ zYC . For all estimators the variance is estimated using 

( ) ∑∑∑ −+−=
r kkkr lklkkllk ezvzvdeezvzvdddV 2ˆ)1)~()(~(ˆˆ)~()~(ˆ    (2) 

where )~(ˆˆ zBxye r
t
kkk −=  and k

t
k zzv ~)~( λ= .  

Table 1 includes simulation results under the Norm(ε )/Norm(ϕ) model, meaning that 

the assumptions of the model considered by [2] are satisfied. The calibration estimator 

)2(ˆ zYC  is therefore expected to perform well with regard to bias. 

In the case of 0=ρ , implying independence between the response indicator and the 

study variable, all estimators in Table 1 have biases tending to zero when the sample size 

increases. The standard deviations for all the estimators also decrease with the sample size. 

The results observed for all estimators when 0=ρ  are expected patterns of consistent 

estimators. 

Also as expected, when 3.0=ρ  this “consistency pattern” is only observed for the 

estimator )2(ˆ zYC . For the other estimators, the standard deviations decrease with the sample 

size, but the biases do not. Estimated biases for the )1(ˆ xYW  estimator are around 2 percent of 

the population mean. Note that the )2(ˆ xYW  estimator, which is utilizing both auxiliary 

variables are associated with larger bias estimates than )1(ˆ xYW .  
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Table 1: Simulated bias and st.dev (in parenthesis) of the calibration estimators 
NYY WW /ˆˆ =  and NYY CC

ˆˆ = . Population model Norm(ε )/Norm(ϕ ) with 
populations means between 6.71 – 6.73. (1000 replications.) 

a)Auxiliary/Instrument vectors: x1=(1 x)t, x2=(1 x u)t, z1=φ̂ x1, z2= x1- ηδ ˆˆ . b) ),( εχρ Corr= . 

 
Table 2: Simulated bias and st.dev (in parenthesis) of the calibration estimators 

NYY WW /ˆˆ =  and NYY CC
ˆˆ = . Population model BinU(ε )/U(ϕ ) with population 

means between 0.55 – 0.57. (1000 replications.) 

a-b) See Table 1. 

The consistency property of the estimator )2(ˆ zYC  comes at the price of a larger 

variance then the other estimators. The RMSE (not reported) of )2(ˆ zYC  is decreasing with N 

but is around 50% higher in comparison with )1(ˆ xYW  when 0=ρ . For 3.0=ρ  the picture is 

different and )2(ˆ zYC  is associated with the smallest RMSE estimates for all sample sizes.  

  Sample/Population size (n/N) 

Estimatora) ρ  b) 200/2000 800/8000 1500/15000 

)1(ˆ xYW  0 -.013 (.092) .009 (.045) .001 (.032) 
0.3 .124 (.092) .153 (.045) .144 (.033) 

)2(ˆ xYW  0 .001 (.111) -.001 (.055) .007 (.040) 
0.3 .204 (.107) .216 (.053) .217 (.040) 

)1(ˆ zYC  0 .002 (.129) .003 (.062) .000 (.045) 
0.3 .223 (.125) .230 (.061) .229 (.045) 

)2(ˆ zYC  0 -.041 (.140) .024 (.066) -.006 (.046) 
0.3 -.043 (.147) .026 (.069) -.008 (.048) 

  Sample/Population size (n/N) 

Estimatora) ρ  b) 200/2000 800/8000 1500/15000 

)1(ˆ xYW  0 -.005 (.036) -.000 (.018) -.001 (.013) 
0.3 .038 (.038) .044 (.019) .043 (.014) 

)2(ˆ xYW  0 -.008 (.041) .002 (.021) -.001 (.015) 
0.3 .050 (.044) .062 (.022) .060 (.016) 

)1(ˆ zYC  0 -.003 (.046) -.000 (.023) -.000 (.016) 
0.3 .066 (.053) .071 (.026) .071 (.019) 

)2(ˆ zYC  0 -.002 (.055) -.003 (.028) -.002 (.020) 
0.3 .002 (.061) -.001 (.031) -.000 (.022) 
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Table 3: Simulated bias of variance estimators and coverage rates of 95 percent confidence 
intervals (% in parenthesis). Population model Norm(ε )/Norm(ϕ ). (1000 
replications.) 

a-b) See Table 1. 

 
Table 4: Simulated bias of variance estimators and coverage rates of 95 percent confidence 

intervals (% in parenthesis). Population model BinU(ε )/U(ϕ ). (1000 
replications.) 

a-b) See Table 1. 

 

Although the assumptions in the model considered by [2] are not satisfied in the 

BivU(ε )/U(ϕ) case considered in Table 2, the results show a similar pattern as the one in 

Table 1. All estimators have small and negligible bias estimates in the 0=ρ  case. For 

3.0=ρ  however, only the calibration estimator )2(ˆ zYC  has negligible bias estimates. 

Tables 3 and 4 contain relative bias estimates of the variance estimator (2) for the 

different calibration estimators considered in Tables 1 and 2. The tables also contain 

Estimator 
of variance 

fora) 

 Sample/Population size (n/N) 

ρ  b) 200/2000 800/8000 1500/15000 

)1(ˆ xYW  0 -.027 (94) .026 (94) .062 (96) 
0.3 -.023 (71) .019 (8) .028 (1) 

)2(ˆ xYW  0 -.051(94) -.002 (96) .006 (95) 
0.3 -.039 (50) .020 (2) -.039 (0) 

)1(ˆ zYC  0 -.103 (93) -.048 (94) -.048 (95) 
0.3 -.058 (51) -.012 (3) -.039 (0) 

)2(ˆ zYC  0 .055 (94) .096 (93) .194 (96) 
0.3 .087 (95) .099 (94) .216 (96) 

Estimator 
of variance 

fora) 

 Sample/Population size (n/N) 

ρ  b) 200/2000 800/8000 1500/15000 

)1(ˆ xYW  0 -.015 (95) .006 (95) .006 (95) 
0.3 -.015 (84) -.013 (38) -.045 (12) 

)2(ˆ xYW  0 -.021 (94) .003 (94) -.014 (94) 
0.3 -.038 (78) -.042 (19) -.067 (4) 

)1(ˆ zYC  0 -.093 (94) -.026 (95) .005 (95) 
0.3 -.136 (74( -.036 (18) -.040 (3) 

)2(ˆ zYC  0 .075 (96) .058 (96) .071 (96) 
0.3 .115 (96) .092 (97) .091 (96) 
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estimated coverage rates of 95 percent confidence intervals of the population total. Regarding 

relative bias of the variance estimators, results show no explicit pattern except for the )2(ˆ zYC  

estimator whose variance is overestimated in general. The bias is particularly large in the 

n/N=1500/15000 case. 

Although the variance of )2(ˆ zYC  is overestimated by the variance estimator proposed, 

calculated confidence intervals have an appropriate coverage level in all cases considered in 

tables 3 and 4. This is not observed for the other estimators, where the coverage rates are 

heavily distorted in the 3.0=ρ  case. 

6. Final comments 

One important feature of the linear calibration estimator, which makes it a popular 

alternative, is its simplicity in calculation. Not only are the weights easily calculated, they are 

also the same for different study variables if the response sets are the same. Given calculated 

instrument vectors, the calibration estimator (1) has the same features of simplicity in 

calculation and with weights being the same for different study variables.  

The implementation of the modified calibration estimator using the sample selection 

model for deriving instrument variables gives a link between calibration estimation and the 

Heckman two-step estimator ([2]). Using the Frisch-Waugh-Lowell Theorem in [9, p. 19], the 

Heckman two-step estimator can be rewritten as an instrument variable regression estimator, 

where the instruments are formed as in the numerical illustrations. Thus, with those 

instruments the modified calibration estimator can be implemented by calculating the 

Heckman two-step estimator using design weighted LS regression in the second step. 

Instruments based on the sample selection model showed some robustness against 

departure from the assumptions underlying the instrument calculations. Further developments 

are desired where either alternative approaches for construction of instruments are considered 

or where instruments are derived from e.g. semi-parametric sample selection models (e.g. 

[10]). In particular it is of interest to develop instruments in cases with categorical response 

variables.  
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