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Abstract

Administrative data is nowadays a regular element in production of official

statistics at many NSIs. Not only is administrative data used in support of

samples surveys, administrative data is transformed into statistical registers

from which statistics are directly produced. Although of immense impor-

tance in statistics production, published register based statistics are rarely

accompanied with measures of uncertainty. Such measures are necessary for

appropriate interpretation and are the focus of this paper. Several options

for constructing confidence intervals utilizing existing statistical methods are

discussed. A method based on a new theoretical concept is presented and illus-

trated with an empirical example. The method results in confidence intervals

interpretable in terms of standard confidence intervals, making uncertainty

measures from sample surveys and register surveys, respectively, comparable.
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1 Introduction

Theories on confidence intervals rests on the formulation and solution of the problem

as presented by [1]. In the premises of the problem it is assumed there is a random

experiment to be conducted yielding a sample of data upon which a confidence in-

terval is to be calculated. The general framework rests on choosing an appropriate

statistic and calculate a confidence interval from an estimate of its sampling distri-

bution. With this setting the standard format of a confidence interval, i.e. (point
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estimate) ± kα/2(standard error of estimate) is shown optimal under appropriate

conditions ([1],[2] and [3]).

Administrative data is nowadays a regular element in production of official statis-

tics at many NSIs. Not only is administrative data used in support of samples

surveys, such data is transformed into statistical registers from which statistics are

directly produced (e.g. [4]). The Neyman approach for calculating confidence in-

tervals is here not possible since the very basic assumption of data making up a

random sample is not valid.

Although data is not obtained as a random sample, errors in estimates are ex-

pected due to non-sampling errors (measurement errors, missing values and coverage

errors). One approach for measuring uncertainty due to non-sampling errors is to

apply survey sampling methods. However, such an approach adds costs and is of

less interest. Another way is to invoke randomness by treating a register as obser-

vations of a stochastic process. This alternative would move the inference into a

model based setting yielding confidence intervals a different interpretation from the

one obtained within the randomization theory framework.

This paper provides with a new theoretical framework, Confidence Images, for

the calculation of confidence intervals of finite population parameters. It provides

with an encompassing tool where different sets of information can be used in forming

a confidence interval. One feature of the confidence image framework is that it

holds existing methods for calculating confidence intervals as special cases. The

idea behind confidence images is to use information to limit the set of potential

combinations of values on the study variable. If a standard confidence interval is

used as this information, it will be reproduced by the confidence image.

The theory on forming confidence images from an information set is presented

in the next section. Section 3 contains a generalization and an example is given in

Section 4. A discussion of results is saved for the final section.
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2 Confidence Images

Consider a finite population U = {1, 2, ..., N}. Let yk (k ∈ U) denote the unknown

values on a non-random k-dimensional study variable defined on a subset of Rk.

Define the Nk × 1 vector y = vec(y1, ..., yN), and from the researcher’s point of

view, the potential values of y are confined to a set Υ such that y ∈ Υ ⊆ RNk.

Suppose a survey is to be conducted for estimation of the p-dimensional popu-

lation parameter t = f(y) ∈ Rp, where f is a function defined on RNk. A unique

function value f(z) is assumed to exist for any element z ∈ Conv(Υ), the convex

hull of Υ. The image of Υ under f is denoted Γ ⊆ Rp. Simple but often considered

examples are the population totals t =
∑

U yk and means t = N−1
∑

U yk.

The estimation strategy considered here is to derive confidence intervals (regions)

for the population parameters by restricting the true value y into a subset A of Υ.

A set A is defined as an ”information set” on y if A ⊂ Υ and A 3 y, where

the latter statement is either known to be true or assessed with some degree of

uncertainty. For a general treatment introduce some probability measure and define

Pr(A 3 y) = 1 − α (0 ≤ α ≤ 1). Note that A is here treated as random (α > 0)

while y is nonrandom. The case when the statement A 3 y is known to be true is

represented by α = 0.

Suppose A is constructed such that it is known to include the unknown y. The

function f defines an image T of A being a subset of Γ. Then, since A contains y

as one of its elements, t is included as an element of the image, i.e. f(A) = T ⊆ Γ

and T 3 t.

In general Pr(A 3 y) = 1− α which gives Pr(T 3 t) ≥ (1− α). The inequality

follows from f being non-injective in general and, t may be in T even though y is

not in A, i.e.

Pr(T 3 t) = Pr(T 3 t | A 3 y)Pr(A 3 y) + Pr(T 3 t | A 63 y)Pr(A 63 y)

= (1− α) + Pr(T 3 t | A 63 y)α
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Thus the following proposition.

Proposition 2.1. Let A ⊂ Υ be an information set on y with Pr(A 3 y) = 1− α.

Define T ⊆ Γ as the image of A under f , then

Pr(T 3 t) ≥ 1− α (1)

Proposition (2.1) offers an alternative method for defining confidence intervals

and regions for unknown population parameters. With T convex connected intervals

and regions are readily defined within T . However, T may not be convex and

”Confidence Images” is here introduced as a more general concept.

Definition 2.1. (Confidence Image (CIm))

Let A ⊂ Υ be an information set on y with Pr(A 3 y) = 1−α. Then a 100(1−α)%

confidence image for t = f(y) is given by f(A) = T .

By Proposition (2.1) the coverage rate of the CIm is at least as great as its

confidence level. It is to be noted that T can be made up of disconnected sets of

values, e.g. the union of disjoint intervals or spheres. More precisely, if Conv(T ) is

the convex hull of T , then (Conv(T )− T ) ∩ Γ 6= φ, in general.

A traditional confidence interval can be obtained as a special case of Definition

(2.1). Suppose D ⊂ R is a confidence interval for the scalar t, obtained from e.g.

a normal approximation of an estimator of t, or using the bootstrap method (e.g.

[5]). Consider the inverse image f−1(D) = {z : f(z) ∈ D, z ∈ RNk}. Now using

the information set A = f−1(D) ∩ Υ yields a CIm T = f(A) ⊆ D. A strict subset

occurs when elements in the image set f−1(D) are not included in Υ. These elements

correspond to elements outside the image Γ and the confidence levels are still the

same for T and D. An example is the mean value of a count data variable yielding

an image Γ being a subset of the rational numbers, while a normal approximation to

the sample mean distribution yields a connected confidence interval of real numbers.
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3 Multiple information sets

Several sets of information can be combined into an information set for y. Let A′

and A′′ be two sets with probabilities 1 − α′ and 1 − α′′, respectively, of covering

y. Then the intersection A = A′ ∩ A′′ forms a confidence region with coverage

probability Pr(A 3 y) = Pr(A′′ 3 y | A′ 3 y)Pr(A′ 3 y).

An alternative to the intersection is the union B = A′ ∪ A′′ which has coverage

probability Pr(B 3 y) = Pr(A′ 3 y) + Pr(A′′ 3 y) − Pr(A 3 y). It is not

possible to generally state which set to be used without additional considerations.

If the sets A′ and A′′ are independent, then Pr(A 3 y) = (1 − α′)(1 − α′′) and

Pr(B 3 y) = (1 − α′) + (1 − α′′) − (1 − α′)(1 − α′′). If the information is locked

in the sense the confidence levels of A′ and A′′ can not be altered, the choice of

A or B can be made upon the resulting confidence level of T . One special case is

obtained if both information sets covers y with certainty, then it is obvious to use

the intersection A since it is a subset of the union B.

A delicate situation occur if it is possible to control the level of confidence for

both information sets. It is then possible to construct alternative information sets

A′ and A′′, one pair for forming A and another pair for forming B, such that Pr(A 3

y) = Pr(B 3 y). In this case A may not be a subset of B and further considerations

are needed for choosing an information set for the CIm.

One argument for choosing the intersection can be convexity of the image T . If

A′ and A′′ are both convex sets, then A is also a convex set while B may not be

so. Convexity here implies T to be a connected sphere in Rp. In cases where Υ is a

discrete point set, an argument for convexity can be made by considering the convex

hulls of the information sets if (Conv(A′)− A′) ∩Υ = (Conv(A′′)− A′′) ∩Υ = φ.

The above problems of choosing how to combine two information sets vanish

if the sets bring information on disjoint parts of y, e.g. two different parts of the

population. Suppose y = y1 × y2 and correspondingly A1 ⊆ Υ1, A2 ⊆ Υ2 and

Υ = Υ1 ×Υ2.
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Using only A1 yields the information A′ = A1×Υ2 and the coverage probability

Pr(A′ 3 y) = 1−α′. Using only A2 yields A′′ = Υ1×A2 and Pr(A′′ 3 y) = 1−α′′.

Using the intersection yields A = A′ ∩ A′′ = A1 × A2 and Pr(A 3 y) = Pr(A′′ 3

y | A′ 3 y)Pr(A′ 3 y), which equals (1−α′)(1−α′′) under independence of A1 and

A2. The union B = A′ ∪ A′′ = Υ brings no information on the value y.

4 Numerical Illustration, Register Statistics

This section includes an example of constructing CIm for a population parameter

using register information. For simplicity the register is assumed to include all units

in the population (no coverage errors) and all available data in the register is correct

(no measurement error). However, the register contains missing observations and

the CIm is to be used for illustration of the uncertainty due to missing observations.

The register used for the illustration is a register of farms containing 72030

units and the variable considered is the number of cattle held at the farm (yk).

The purpose is to estimate the total number of cattle in the population of farms

(t = f(y) =
∑

U yk).

The register has no missing observations and is treated as the true population and

with true variable values. The true total number of cattle is 1.56 million. Missing

values are generated by deleting randomly selected values using Poisson sampling

with probabilities Pr(yk is missing) = [1+exp(1+0.5 · log(1+yk))]
−1. This function

yields a register where farms with a small number of cattle is over represented among

units with missing values.

The generated register with missing values are described by the summary statis-

tics in Table 1. As is seen from the table, a domain variable ”County” is also

available in the register. This variable is without missing observations. In the fol-

lowing a sequence of assumptions on available information is made and used for

forming CIms for the number of cattle in the original register.

The first piece of information on y is the generated register, which contains
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Table 1: Summary statistics of created register
County N:o units N:o missing values Sum of observed values

1 18713 3817 393797
2 14321 2918 296944
3 12281 2475 261832
4 10836 2213 216535
5 8646 1763 185285
6 7233 1485 148029

Total 72030 14671 1502422

Table 2: Additional information on domain level
N:o units in register N:o units in U

County yk = 0 yk ≥ 553 yk ≥ 100 yk ≥ 100
1 9108 29 1252 1288
2 6989 17 931 959
3 5960 21 784 800
4 5329 12 677 701
5 4196 10 581 601
6 3565 11 467 477

Sum 35147 100 4692 4826

the values of yk for 57359 units. This information set is below denoted A′. Lets

assume these units are the upper part of y where its lower part is the variable values

which are missing in the register, and sorted after the domain variable County, i.e.

yt = (y0
t y1

t · · · y6
t) where yj contains the observed values in the register (j = 0)

and the unobserved values in counties (j = 1, ...,6).

As a second set of information, the register is known to include yk for the 100

largest farms in the population, and the size of the 100th largest farm is 553 animals.

Let a = {0, 1, 2, ..., 553} and A′′ = a14671, then A = A′ × A′′ 3 y. The image T of

this A is obtained as the set of integers T = {1502422, ..., 9615485}. The confidence

image is of 100% confidence.

A third set of information is presented in Table 2, where the three first columns

are obtained from the register, and the final column is assumed obtained from exter-

nal sources. For the missing values of units in County 1, it is then known that 3781

units have values in the set {0, 1, ..., 99} and 36 units have values in {100, ..., 553}.
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Let A1 denote the set of potential values of y1 which satisfies these restrictions.

Similar sets can be defined for the other five domains.

Define A′′′ = A1 × A2 × · · · × A6. This information can be combined with the

information above in A = A′ × (A′′ ∩ A′′′). The image set of A can be obtained

by considering separate CIms for each county, i.e. calculating the minimum and

maximum possible number of cattle in each county. The resulting image set for the

population total is T = {1516381, ..., 3016147}.

As a final example, suppose there is available a 95% confidence interval, 0.6 -

0.71, on the proportion of farms with no cattle. Adding this information yields

cross restrictions over counties which have to be accounted for in the calculation of

the CIm. Let m(z) denote the number of zero elements in the vector z. Consider

A′v = {z1 × · · · × z6 | zj ∈ Υj, j ∈ {1 · · · 6}, 8071 ≤
∑6

j=1m(zj) ≤ 15724}. The

limits on the number of zeros among missing values are obtained by subtracting the

number of zeros in A′ (35147) from the number of zeros estimated by the confidence

interval (43218 - 51141). The upper limit is larger then the number of missing values,

whereby the actual upper limit in A′v is 14761 instead of 15724. The information in

A′′ and A′′′ can be added yielding

A = A′ × (A′v ∩ A′′ ∩ A′′′)

Calculation of a CIm from the information A can be done by considering different

allocations of 8071 and 14761 zeros, respectively, over the different counties. The

resulting 95% CIm for the population total of cattle ranges between 1.52 and 2.22

million cattle.

5 Final comments

Definition 2.1 gives a tool for calculating confidence intervals (or regions) when

traditional ways of calculation are not feasible or applicable. The framework is to

be seen as a generalization keeping standard confidence intervals as a special cases.

The strength of the CIm theory lies in the supply of a framework for combining
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information sources when this is not possible within the traditional Neyman [1]

framework.

In Section 4 an example is given addressing register statistics. National sta-

tistical agencies world wide look for the potentials in using administrative data in

statistics production, partly in efforts to cut costs. There is, however, no agreed

upon methodology for assessing accuracy of register survey based statistics. As il-

lustrated by the example, the CIm theory gives a framework for developing such a

methodology. CIm is here of special interests since calculated confidence intervals

can be made compatible with confidence intervals reported from sample surveys.

One feature of the framework is that any kind of information can be used in

the calculation of a CIm, as long as it comes with a measure of uncertainty. This

means the researcher can tailor the survey with respect to the estimation problem

and information sources at hand. Here the researcher can utilize sources like social

media, internet web sites and non-probability samples.
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